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Periodic oscillations and bifurcations of a two-dimensional airfoil in plunge and
pitching motions with cubic pitching sti!ness in incompressible #ow is investigated
using the incremental harmonic balance (IHB) method. The bifurcations are
obtained with the parametric continuation technique and the stability of the
periodic motions is investigated using the Floquet theory. The autonomous
non-linear system of the airfoil undergoes initial Hopf bifurcation leading to limit
cycle oscillation as the airspeed parameter is increased. Further increase in the
airspeed causes symmetry breaking, saddle-node and period-doubling bifurcations
leading to chaos. The frequency of the limit cycle oscillation is also determined in
the IHB method.
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1. INTRODUCTION

A number of investigations have been carried out in recent years for the aeroelastic
analysis of airfoils and missile control surfaces with structural and free play
non-linearities. Such non-linearities have signi"cant e!ects on the aeroelastic
response which exhibits diverse motions like periodic response, including harmonic
and subharmonic motions, chaotic motion, divergent #utter and damped stable
motions. Dowell [1] has shown that a buckled plate with #uid #ow over its upper
surface can exhibit chaotic motion. Many issues such as interaction between
a number of modes, sensitivity of the time step used in numerical simulation, e!ect
of initial and su$cient conditions for onset of chaos have been discussed. The
e!ects of structural non-linearities on the response of blu! body oscillators and
airfoils in transonic #ow have been discussed in Dowell and Ilgamov [2]. Yang and
Zhao [3] have performed theoretical and experimental studies to investigate the
self-excited oscillations of a two-dimensional airfoil model with non-linear pitching
sti!ness. Free play non-linearity was considered in their study and the single-term
harmonic balance method was used to ascertain the stable and unstable limit cycle
motions. Digital simulation was used for #utter analysis and comparison between
the theoretical and experimental results were made. Zhao and Yang [4] have
investigated the chaotic behavior of two-dimensional airfoils with cubic pitching
022-460X/99/380493#25 $30.00/0 ( 1999 Academic Press
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sti!ness in incompressible #ow. They have shown that such a system exhibited
chaotic behavior through a series of period-doubling bifurcations in certain
parameter ranges. The boundaries of di!erent motion types are shown in the
parameter map of airspeed and elastic axis position by numerical simulation. Tang
and Dowell [5] have studied the #utter instability and forced response of
a non-rotating helicopter blade model with NACA-0012 airfoil and a pitch-free play
structural non-linearity. The e!ects of various initial disturbance amplitudes on the
forced response behavior were discussed. The results showed that the system
exhibited both limit cycle oscillation and chaotic behavior. A two-dimensional airfoil
with either a bilinear or cubic structural non-linearity in pitch and subjected to
incompressible #ow has been analyzed by evaluating the aerodynamic forces on the
airfoil using Wagner's function by Price et al. [6]. The equations were solved by
numerical integration using a "nite-di!erence method and in a semi-analytical
manner by using a dual-input describing function. For the system with cubic
non-linearity it was shown that chaos could exist which was con"rmed by computing
the Lyapunov exponents. The chaotic motion was obtained for both bilinear and
cubic non-linearities. Kim and Lee [7] have also analyzed the dynamics of a
two-dimensional airfoil with freeplay non-linearity and have observed limit cycle and
chaotic motions which were highly in#uenced by the pitch-plunge frequency ratio.
An experimental model which closely approximated the three-degrees-of-freedom
typical airfoil section in two-dimensional, incompressible #ow was constructed to
validate the theoretical results by Conner et al. [8]. The theoretical response was
determined by time marching of the governing equations using a standard
Runge}Kutta algorithm in conjunction with Henon's method. The e!ect of free play
on the system response was examined numerically and experimentally.

In this paper, the periodic motions of self-excited two-dimensional airfoil with
cubic pitching sti!ness are investigated by the incremental harmonic balance (IHB)
method. The IHB method was developed by Cheung and Lau [9] to obtain
periodic solutions of non-linear structural vibration problems based on an
incremental Hamilton's principle. The method was applied to the problem of
non-linear beam vibration with di!erent boundary conditions and superharmonics,
subharmonics and internal resonances were obtained. Lau et al. [10] have applied
a variable parameter incrementation method to determine the parametric
instability boundaries of beams and columns with geometric non-linearities. The
boundaries of the qualitatively di!erent solution regions of the Du$ng's oscillator
in the parametric space were constructed by the IHB method by Leung and Fung
[11]. Chen et al. [12] have used the IHB method to get the limit cycle motions of
a self-excited Van der Pol oscillator. Lau and Yuen [13] have used the IHB method
to obtain the response diagrams of Van der Pol oscillators and coupled Van der Pol
oscillators. The IHB method was modi"ed by Leung and Chui [14] by reversing
the order of the incrementation and linearization to obtain the periodic motions of
a system of coupled Du$ng oscillators linked through a linear spring. They also
used an improved arc-length parametric continuation technique to trace the
bifurcations and obtain the response diagrams.

The model for the dynamics of the airfoil adopted in this paper is essentially the
same as that of Zhao and Yang [4]. The cubic pitching sti!ness is used so as to
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correspond to the panel #utter model under inplane loads [1]. This can also
approximate to a large extent free play non-linearities. As in the paper of Zhao and
Yang [4] the unsteady aerodynamics forces involving the inertial and velocity
terms are neglected for simplicity. While Zhao and Yang [4] have obtained the
di!erent types of responses essentially by numerical integration, this paper is
devoted to a systematical tracing of the bifurcation diagrams and identi"cation of
the types of bifurcations by a stability analysis using the Floquet theory. For this
purpose the IHB method is used to obtain the periodic solutions of various orders
and path following procedure to trace the response diagrams. The improved
arc-length parametric continuation technique of Leung and Chui [14] is adopted
for the path following. The periodic and subharmonic motions obtained by the IHB
method compare very well with those obtained by numerical integration. The
airfoil undergoes an initial Hopf bifurcation giving rise to limit cycle motion which
further undergoes symmetry breaking, saddle-node and period-doubling bifurca-
tions leading to chaotic motion. Chaotic motion is investigated in terms of phase
planes, Poincare' sections and Lyapunov exponents by numerical integration.

2. NON-LINEAR MODEL OF A TWO-DIMENSIONAL AIRFOIL

Non-linear aeroelastic problems provide a rich source of static and dynamic
instabilities and associated limit cycle motions. In aircraft design practice,
structural non-linearities and concentrated non-linear elements such as in all
moving tails, control surfaces and external stores are important to be included in
the dynamic analysis. A two-dimensional airfoil in incompressible #ow with
non-linear sti!ness and linear viscous damping is shown in Figure 1. The equations
of motion of the airfoil with two-degrees-of-freedom in pitch and plunge are given
by [15]

mhG#SaK#K
h
h"Q

1
, (1)

ShG#IaK#Kaa"Q
2
, (2)

where h is the plunging displacement, a is the pitch angle, the over dots indicate the
order of di!erentiation with respect to time t, m is the mass per unit span, S is the
static moment, I is the mass moment of inertia about the elastic axis of the airfoil,
and K

h
is the sti!ness coe$cient in plunge and Ka is pitching sti!ness coe$cient.

The unsteady aerodynamic force Q
1

and moment Q
2

can be expressed in terms of
the Theodorsen functions as [3]

Q
1
"!nob2(<aR #hG!abaK )!2no<bC(k)[<a#h0 #(0)5!a)baR ],
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#2no<b2(0)5#a)C(k)[<a#hQ #(0)5!a)baR ]. (3)



Figure 1. Two-dimensional airfoil.
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In the above equations o is the air density, < is the air speed, b is the half-chord
length of the airfoil, ab is the stream-wise distance of the pitch axis from the
mid-chord point (Figure 1), C(k) is the Theodorsen function, k"ub/< is the
reduced frequency and u is the frequency. Introducing non-dimensional time
q"uat and neglecting the unsteady aerodynamic terms on the right-hand side of
equations (1) and (2) containing the acceleration and velocity terms as considered
by Zhao and Yang [4], the equations of motion can be transformed as

k(d2x
1
/dq2)#kxa(d2x

2
/dq2)#k(u

h
/ua)2x

1
"!2 la, (4)

kxa (d2x
1
/dq2)#k r2a (d2x

2
/dq2)#k r2a x

2
"(1#2a) la, (5)

where x
1
"h/b is the plunging displacement divided by b, x

2
"a is the pitching

angle, l"</bua is the non-dimensional airspeed parameter, k"m/(nob2) is the
non-dimensional mass parameter, ab as already de"ned is the distance of elastic
axis E from the mid-chord length, (0)5#a) b is the distance of E from the
aerodynamic center F, xab is the distance of the center of gravity from E, rab is the
radius of gyration of the airfoil with respect to E, and u

h
"k

h
/m and ua"ka/Ia are

the eigenfrequencies of the constrained one-degree-of-freedom systems associated
with the linear plunging and pitching motions respectively. By taking the numerical
values of the parameters to be k"20, a"!0)1, b"1 m, xa"0)25, r2a"0)50,
(u

h
/ua)2"0)2, u

h
"28)10 Hz and ua"62)80 Hz and introducing a viscous

damping term and a cubic pitching sti!ness in equations (1) and (2), and
approximating equation (3) by neglecting the inertial and velocity terms, equations
(4) and (5) can be reduced to the following form:
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The over dots now represent the order of di!erentiation with respect to non-
dimensional time q. The above equations represent a set of autonomous equations.
The periodic solutions of the above equations are obtained by the IHB method
including their fundamental frequency and their stability is investigated. Chaotic
motions are obtained by numerical integration. The values of the various
parameters are assumed as in Zhao and Yang [4].

3. INCREMENTAL HARMONIC BALANCE METHOD

The general multi-degree-of-freedom non-linear autonomous system can be
represented by the system of simultaneous non-linear di!erential equations of the
form

/
i
"X2xK

i
#f

i
(x

1
, x

2
,2 , x

n
, xR

1
, xR

2
,2 ,xR

n
, X, j)"0, i"1, 2,2 ,N, (8)

where X is the frequency of oscillation of possible limit cycle motion of the
autonomous system as yet undetermined. /

i
is a set of non-linear functions and j is

a system parameter. In the IHB method a starting solution of equation (8) is
assumed as x

i0
(i"1, 2,2 ,N), X

0
, j

0
and the next solution is obtained by

incrementing the initial solution as

x
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#Dx

i0
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1
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0
#DX

0
and j

1
"j

0
#Dj

0
. (9)

Expanding equation (8) in Taylor series about the initial state the linearized
equations in terms of the increments can be written in matrix form as

B DXG #CDXQ #K DX"R!(2X
0
XG

0
#Q) DX!P Dj, (10)

where B is a diagonal matrix with diagonal elements X2
0
, X

0
"Mx

10
, x

20
,2 ,

x
N0
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, Dx
20

,2 , Dx
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NT,

C and K are the Jacobian matrices corresponding to xR
i
and x

i
respectively. Q and

P are the vectors containing the derivative of f
i
with respect to X and j respectively,

and R is a residue vector containing the higher order terms and the superscript
T indicates transpose. Since x

i0
is the assumed initial periodic solution, it can be

approximated by the truncated Fourier series of the form

x
i0
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#

M
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Likewise the increment Dx
i0

can also be expanded in the form
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Equations (11) and (12) can be written as
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and DA
0

likewise in terms of Da
ij

and Db
ij
1s and substituting equations (13) and (14)

in equation (10), applying the Galerkin procedure, and orthogonalizing the
equations with respect to cos q, cos 2q,2, etc., we get

DA
TGP

2n

0

XT[X2
0
XG #CXQ #KX] dqHDA"DATGP

2n

0

XTRdq

!P
2n

0

XT[Q#2X
0
XG A

0
] dqDX#P

2n

0

ZTPdqDjH, (17)

where X is a N[N(2M#1)] matrix with the "rst 2M#1 columns of the "rst row,
2M#2 to 4M#2 columns of the second row and so on and (N!1)(2M#1)#1
to N(2M#1) of the Nth row being the elements of vector T and the other elements
being zero. The above equation can be written as

kDA"r#qDX#pDj, (18)

where k is the Jacobian matrix, r is the residue vector, p is the parametric gradient
vector and q is the frequency gradient vector. These matrices and vectors depend on
the type of non-linearities considered for study. In the present paper cubic sti!ness
non-linearity in pitching is considered. The contribution to the terms in equation
(18) from the linear parts of the governing equation is easy to obtain and the
contribution from the non-linearity is given below:

r
i0
"2B

0
, r

ia
"Bc

k
, r

ib
"Bs

k
, (19)

[k]
cubic

"C
k
0

k
c

k
s

k
c

kcc
ij

kcs
ij

k
s

ksc
ij

kss
ij D , (20)



PERIODIC AND CHAOTIC RESPONSE OF AIRFOIL 499
k
0
"4A

0
, k

c
"2Ac

j
, k

s
"2As

j
,

kcc
ij
"G

2A
0
#Ac

i`j
Ac

i`j
#AcDi!j D

if i"j,
if iOj,

kcs
ij
"As

i`j
!sgn( j!i)AsDi!j D ,

ksc
ij
"As

i`j
!sgn(i!j) AsDj~1 D, kss

ij
"G

2A
0
!Ac

i`j
!Ac

i`j
#AcD i~j D

if i"j,
if iOj.

In these expressions, B
0
, Bc

k
and Bs

k
represent the constant coe$cient, cosine

coe$cient and sine coe$cients of the triple product x3
2

of the assumed solution
respectively. Similarly, A

0
, Ac

k
and As

k
represent the constant coe$cient, cosine

coe$cient and sine coe$cient of the square product x2
2

of the assumed solution.
The expressions for these coe$cients are given in Appendix A. This method is
equivalent to a multi-harmonic balance procedure and a Newton}Raphson
technique. Also in this equation the number of incremental unknowns is one more
than the number of equations due to the additional unknown DX. However, this is
solved by "xing one of the Fourier coe$cients to be zero in the solution procedure.
Equations (18) represent a set of linear equations in the increments DA and DX at
each step which can be solved iteratively.

4. STABILITY ANALYSIS

The stability of the periodic solutions obtained by the IHB method is investi-
gated by perturbing the state variables about the steady state solutions. By
perturbing the obtained steady state solution x

i
by Dx

i
, we get the incremental

equation of the following form:

(L/
i
/LxR

i
)DxK

i
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i
/)x

i
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i
/Lx

i
)Dx"0, i"1, 2,2, N. (21)

These equations are linear in Dx
i
's but with periodically varying coe$cients in

general. We can rewrite the above equation in the matrix form as

g5 "D(q)g, (22)

where g"MDxR , DxNT with Dx"MDx
1
, Dx

2
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, for i"N#1, 2N, j"1, 2,2, N, and D

ij
"0 for i"N#1,2, 2N,

j"N#1,2, 2N, and d
ij

is the Kronecker delta. The stability of the periodic
solution can be checked by evaluating the eigenvalues of the monodromy matrix,
which transforms the state vector g

n
at q"n¹ to g

n`1
at q"(n#1)¹, where ¹ is

the period of the periodic solution. The eigenvalues of the monodromy matrix are
the Floquet multipliers corresponding to the periodic solution. The periodic



500 A. RAGHOTHAMA AND S. NARAYANAN
solution would be stable if all the eigenvalues of the monodromy matrix lie within
the unit circle. As a system parameter is varied, the eigenvalues also move and if any
one of the eigenvalues crosses the unit circle the corresponding periodic solution
loses stability leading to another type of solution. The way in which the eigenvalues
cross the unit circle indicates the nature of bifurcation. The monodromy matrix is
obtained in this paper by a procedure outlined by Friedmann et al. [16] using
a scheme of matrix exponentiation.

5. PATH FOLLOWING AND PARAMETRIC CONTINUATION

In order to study the bifurcations as a system parameter is varied, a path
following procedure using the arc-length continuation method given by Leung and
Chui [14] has been adopted. Introducing the path parameter c, the augmenting
equation can be written as

g (x)!c"0, (23)

where

x"[MdM NT, v]T, dM "MMdT
1
, dT

2
,2 , dT

N
NTN and d

i
"Ma
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, a

i1
,2 , a

iN
, b

i1
,2 , b

in
NT.

A good choice of the function g (x) is g (x)"xT x. Considering the increments in
dM , l and c in equation (23), we get the incremental equation as

N(2M`1)
+
j/1

Lg
LdM

j

MDdM
j
N#

Lg
Lv

Dv!Dg#g (x)!c"0, (24)

where dM
j
is the jth element of dM .

Considering the portion of the equilibrium path of the solution branch shown in
Figure 2, the augmenting equation (23) is written as

g(x)!c"[x@NTMx!x
c
N"0. (25)

The "rst prediction of the new point x
u
of the solution along the equilibrium path

is given in terms of the two previous points x
c
and x

cc
as follows:

x
u
"x

c
#Dcx@, (26)

where x@"Mx
c
!x

cc
N/Ex

c
!x

cc
E and Dc is an arbitrary step length taken in the

computation by experience.
As the system considered is autonomous, the frequency of oscillation will not be

known initially. This results in one extra unknown term while adopting the
Newton}Raphson method of solution in the IHB method. This is solved by "xing
one of the Fourier coe$cients. In this paper, the last sine coe$cient of the pitching



Figure 2. A portion of the equilibrium path.
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mode is "xed as zero. The number of harmonics considered for obtaining periodic
and subharmonic motions is discussed in the next section. Thus by "xing one of the
harmonics to be zero and in that place introducing the frequency as unknown and
by taking c"0 in equation (22) and combining these equations together, the
resulting augmented incremental equation used for tracing the bifurcation diagram
is given below:

C
![k] G

q
pH

MLg/LdM
j
NT Lg/Lv D G

Dd1

DX

Dv H"!G
r

g!DgH . (27)

6. RESULTS AND DISCUSSION

The periodic motions of the airfoil with cubic pitching sti!ness described by
equations (6) and (7) are obtained by the IHB method. The non-dimensional speed
v is taken as the bifurcation parameter and the various bifurcations are obtained by
the parametric continuation technique. The values of e and d are taken to be e"20
and d"0)07. v is varied in the range from 0)05 to 16)0. This corresponds to
considering a vertical section at d"0)07 in the sketch of boundaries for di!erent
types of motion in the (v, d) parameter plane given in Zhao and Yang [4]. The
response diagrams corresponding to the pitch-mode oscillations are given in
Figures 3(a), (b) and 4(a), (b). In Figures 3(a) and 4(a) the maximum amplitudes
x
1.!9

and x
2.!9

plotted, while in Figures 3(b) and 4(b) the average amplitudes
(x

1.!9
#x

1.*/
)/2 and (x

2.!9
#x

2.*/
)/2 are plotted against v. For a low value of the

#ow speed parameter v"0)05 shown as point &&a'' in the "gures, the airfoil is at rest.
As v is increased, it remains at rest for up to a value of v"3)08. This is marked as
point &&b'' in the diagrams. At point &&b'' a Hopf bifurcation takes place as evidenced
by a pair of complex conjugate eigenvalues of the monodromy matrix leaving the
unit circle radially. Typical values of the complex conjugate eigenvalues in the
range v"3)03 to 3)1 are given in Table 1.



Figure 3. Response diagram in the plunge mode (e"20, d"0)07). (a) Maximum amplitude
versus v; (b) Average amplitude versus v.
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The limit cycle periodic motion resulting out of the Hopf bifurcation is deter-
mined by the IHB method along with its fundamental frequency. In the "rst
iteration, the unknown frequency is assumed to be X"0)42169. The IHB proced-
ure is started and the results of 10 iterations in terms of the error norms are shown
in Table 2 at the end of which the periodic solution and its fundamental frequency
are obtained with the desired accuracy. The values in Table 2 give the norm of the
residue vector and the norm of the increments of the Fourier coe$cients including
the increment in the unknown frequency during each iteration. It is observed from
the table that both of these norms are reduced substantially within a few iterations.
In Table 3, the value of the unknown frequency obtained during each iteration is



Figure 4. Response diagram in the pitch mode (e"20, d"0)07). (a) Maximum amplitude versus
v, (b) Average amplitude versus v.
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given and it is seen that convergence to the fundamental frequency of the periodic
solution is achieved within eight iterations. Starting with an initial guess of
X"0)42169, the frequency converges to a value of X"0)58122 at the end of the
10th iteration.

The phase planes of the plunge and pitch-mode responses during each iteration
of the IHB method are given in Figures. 5(a)}(j) and 6(a)}(j). The dotted lines in
these phase planes are the solutions obtained by the IHB method during each
iteration and the solid lines give phase planes obtained by numerical integration.
The phase plane obtained by numerical integration is the same in all the "gures but
looks di!erent because of the scale adopted for the displacement and velocity axes.



TABLE 1

Complex conjugate eigenvalues in the region v"3)0}3)2

Flow speed v Complex conjugate eigenvalues Magnitude

3)03 !0)490305E#00$i0)737013E#00 0)885205E#00
3)04 !0)507604E#00$i0)752211E#00 0)907460E#00
3)05 !0)524841E#00$i0)767954E#00 0)930168E#00
3)06 !0)542005E#00$i0)784234E#00 0)953306E#00
3)07 !0)559086E#00$i0)801043E#00 0)976856E#00
3)08 !0)576076E#00$i0)818373E#00 0)100080E#01
3)09 !0)592965E#00$i0)836217E#00 0)102512E#01
3)10 !0)609748E#00$i0)854570E#00 0)104980E#01

TABLE 2

¹ypical values of the norm of residue vector and Fourier coe.cients

Iteration Norm of residue vector Norm of increment vector

1 2)0835E-02 1)0440
2 8)1821E-02 8)1369E-01
3 1)6150E-01 3)6887E-01
4 1)4484E-02 2)7987E-01
5 9)8072E-03 7)4840E-02
6 1)8719E-03 8)7492E-02
7 9)2510E-04 4)5515E-02
8 2)9725E-04 1)2907E-02
9 2)3277E-05 6)5289E-04

10 6)6417E-08 3)501E-06

TABLE 3

¹ypical values of the unknown frequency at the end of each iteration
with starting value of X"4)2169E-001

Iteration Frequency

1 1)3981E-001
2 5)6771E-001
3 5)8885E-001
4 5)6698E-001
5 5)6305E-001
6 5)7233E-001
7 5)7937E-001
8 5)8111E-001
9 5)8122E-001

10 5)8122E-001
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Figure 5. Convergence to limit cycle motion (plunge mode) in the IHB method v"3)5.
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Figure 6. Convergence to limit cycle motion (pitch mode) in the IHB method v"3)5.
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Figure 7. Motion settling to rest (v"0)1). (a) and (b) time histories (c) and (d) phase planes, Limit
cycle motions (v"3)5), (e) and (f) time histories (g) and (h) phase planes.
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It can be observed that at the end of the eighth iteration both the solutions
merge together. This procedure is adopted for computing all the periodic and
subharmonic motions and their frequencies in this section. The time histories
and phase planes corresponding to the static state and limit cycle motion at v"0)1 and
3)5, respectively, are given in Figures 7(a)}(h). As v is increased further this periodic



Figure 8. Phase plane diagrams, Plunge mode (e"20, d"0)07, v"10). (a) Symmetric period
1 motion, (b) and (c) unsymmetric unstable dual period 1 motions, (d) and (e) unsymmetric stable dual
period 1 motions.

508 A. RAGHOTHAMA AND S. NARAYANAN
motion continues to exist till v"10)80 (point c in Figure 4) at which it becomes
unstable indicated by the movement of the Floquet multiplier touching the unit
circle and returning back indicating a symmetry breaking bifurcation. At point &&c''
two unstable and unsymmetric periodic motions emerge as v is decreased further
indicated by the branches cd and cd@. These unsymmetric and unstable dual
periodic motions become stable at d and d@ (v"8)32) at which one of Floquet
multipliers enters the unit circle from the #1 direction indicating a saddle-node
bifurcation. Thus in the region between cd and cd@ there exist one symmetric period
1, dual stable 1 and dual unstable period 1 responses. The phase planes of the "ve
types of period 1 responses obtained by the IHB method are shown in Figures
8(a)}(e) and 9(a)}(e) for both the plunge and pitch modes respectively. The solid
lines as usual indicate stable responses and the dashed lines indicate unstable
responses. The stable solutions obtained by numerical integration are superposed



Figure 9. Phase plane diagrams, Pitch mode (e"20, d"0)07, v"10). (a) Symmetric period
1 motion, (b) and (c) unsymmetric unstable dual period motions, (d) and (e) unsymmetric stable dual
period 1 motions.
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by the &&X'' marks indicating once again the close "t between the IHB and
numerically integrated solutions. In computing all these period 1 responses, eight
harmonics were used in the "nite Fourier series expansion.

Tracing these stable unsymmetric periodic solutions further by the path
following method as v is increased, they remain stable till v"14)76 corresponding
to the point e and e@. At this value the Floquet multiplier leaves the unit circle in
!1 direction indicating a period doubling bifurcation. The dual period 1 motion
gives rise to dual period 2 motion. Further increase in v results in a cascade of
period-doubling bifurcations (points f and f @ at v"15)07) giving rise to dual period
4, period 8 motions, etc., ultimately leading to chaotic motion. The stable solution
branches of the pitch mode are represented by solid lines and unstable branches
by dashed lines in Figures 3(a), (b) and 4(a), (b). The corresponding phase planes of
the period 2 and period 4 solutions obtained by the IHB method are shown in



Figure 10. Phase plane diagrams, (e"20, d"0)07). (a) and (b) dual period 2 motions (v"15)0,
plunge mode), (c) and (d) dual period 2 motions (v"15)0, pitch mode) (e) and (f) dual period 4 motions
(v"15)4, plunge mode) (g}h) dual period 4 motions (v"15)4, pitch mode).
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Figures 10(a)}(h). The solutions obtained by numerical integration are superposed
by the cross mark in the same "gures indicating the close "t between the solutions
obtained by the IHB method and by numerical integration. For obtaining the



Figure 11. Chaotic motion (e"20, d"0)07, v"15)6). (a) and (b) time histories, (c) and (d) phase
planes, (e) and (f) Poincare' sections, (g) and (h) Fourier spectra.
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period 2 solution by the IHB method 16 harmonics were used and for the period
4 solution 40 harmonics were used. The error criteria in the IHB method adopted
for period 1 and period 2 solutions were 1)0]10~05 and for the period 4 solution
was 1)0]0~03.



Figure 12. Dual chaotic motion (e"20, d"0)07, v"15)6, v"15)6). (a) and (b) time histories, (c)
and (d) phase planes, (e) and (f) Poincare' sections, (g) and (h) Fourier spectra.
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The time histories, phase planes, Poincare' sections and Fourier spectra of the
dual chaotic response computed by numerical integration are shown in Figures
11(a)}(h) and 12(a)}(h). As the system is autonomous, strictly the Poincare' section
should be a horizontal line for one of the modes. But in the numerical computation
it is di$cult to get this section exactly for a particular mode, and hence the section



Figure 13. Lyapunov exponents.
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is taken over a small range of plunge-mode displacement between !0)01 and 0)01.
It is seen that the Poincare' section shows a typical strange attractor behavior. The
type of motions exhibited also compare very well with that of Zhao and Yang [4]
obtained by numerical integration.

The Lyapunov exponents are computed using the algorithm given by Wolf et al.
[17]. They are shown in Figure 13. It can be observed that the largest Lyapunov
exponent becomes positive in the region of chaos and the typical value of the
positive Lyapunov exponent at v"15)60 is 0)1070.

7. CONCLUSION

In this paper, the periodic motions of a self-excited two-dimensional airfoil in
pitch and bounce with cubic pitching sti!ness are obtained by the IHB method. The
system exhibits complex dynamical behavior such as limit cycle motions, multiple
responses, subharmonic responses and chaotic motion. A path following procedure
traces the bifurcation behavior and shows an initial Hopf bifurcation of zero type,
symmetry breaking bifurcation and period-doubling bifurcations leading to chaotic
motion. The periodic and subharmonic motions computed by the IHB method
agree very well with those obtained by numerical integration. The unknown
frequency of the limit cycle oscillation of the autonomous system is also obtained
by the IHB method. This demonstrates the ability of the IHB method in accurately
obtaining the periodic motions of the two-degrees-of-freedom non-linear
autonomous system and the e$cacy of the path following procedure in
combination with the IHB method in obtaining the bifurcation behavior.
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APPENDIX A. FOURIER SERIES EXPANSION FOR PRODUCT
OF DISPLACEMENT VECTORS AND TERMS APPEARING

IN EQUATIONS (19) AND (20)

Consider an assumed solution given by the "nite Fourier series of the form

x (q)"a
0
#

N
+
i/0

(a
i
cos iq#b

i
sin iq).

The vector double product is given by

x2(q)"A
0
#

2N
+
k/1

(Ac
k
cos kq#As

k
sin kq).
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In order to derive the expressions for A
0
, Ac

k
, As

k
, considering only two harmonic

coe$cients in the series, we have
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By applying the trigonometric sum and product rule and collecting the terms
corresponding to cos 0q, cos q, cos 2q, cos 3q, cos 4q and sin 0q, sin q, sin 2q, sin 3q,
sin 4q, we get
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In this way, the coe$cients A
0
, Ac

k
, As

k
can be generalized for the series having

N number of harmonics as
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The vector triple product is given by

x3(q)"B
0
#

3N
+
k/1

(Bc
k
cos k q#Bs

k
sin k q),

B
0
"A

0
a
0
#1

2

N
+
i/1

(Ac
i
a
i
#As

i
b
i
),

Bc
k
"Bc

k1
#Bc

k2
#Bc

k3
,

Bc
k1
"G

A
0
a
k

0
if k)N,
otherwise,

Bc
k2
"G

Ac
k
a
0

0
if k)2N,
otherwise,

Bc
k3
"G

1
2

N
+
i/1

(Ac
i`k

a
i
#As

i`k
b
i
)

0

if (i#k))2N

otherwise,



PERIODIC AND CHAOTIC RESPONSE OF AIRFOIL 517
Bc
k4
"G

1
2

N
+
i/1

(AcDi!k D ai
#sgn(i!k)AsD i!k D bi

0

if Di!k D)2N and D i!k D*1,

otherwise,

Bs
k
"Bs

k1
#Bs

k2
#Bs

k3
,

Bs
k1
"G

A
0
b
k

0
if k)N,
otherwise,

Bs
k2
"G

As
k
a
0

0
if k)2N,
otherwise,

Bc
k3
"G

1
2

N
+
i/1

(As
i`k

a
i
!Ac

i`k
b
i
)

0

if (i#k))2N,

otherwise,

Bc
k4
"G

1
2

N
+
i/1

(AcD i!kD bi
#sgn(k!i)AsDk!i D ai

0

if (i!k))2N and D i!k D*1,

otherwise.


	1. INTRODUCTION
	2. NON-LINEAR MODEL OF A TWO-DIMENSIONAL AIRFOIL
	Figure 1

	3. INCREMENTAL HARMONIC BALANCE METHOD
	4. STABILITY ANALYSIS
	5. PATH FOLLOWING AND PARAMETRIC CONTINUATION
	Figure 2

	6. RESULTS AND DISCUSSION
	TABLE 1
	TABLE 2
	TABLE 3
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13

	7. CONCLUSION
	REFERENCES
	APPENDIX A. FOURIER SERIES EXPANSION FOR PRODUCT OF DISPLACEMENT VECTORS AND TERMS APPEARING IN EQUATIONS (19) AND (20)

